
TDA Progress Report 42-91 

I 

1 

I 

295 

July-September 1987 

Fast Autotuning of a Hydrogen Maser by Cavity Q Modulation 
G. J. Dick and T. K. Tucker I 

I Communications Systems Research Section 

I 



rates. The line width is actually broadened by both spin- 
exchange and electromagnetic effects. This is because while 
the changing density modulates the spin-exchange interaction 
with other atoms, changes in the rate induce variation in the R F  
amplitude, and thus also in the electromagnetic transition rate 
bandwidth. Since the Q of the atomic line determines the 
efficacy of any pulling of the oscillation away from its center 
frequency, such a frequency error will be modulated by the 
change in the hydrogen flow. The accuracy of compensation 
is just the accuracy with which the frequency difference 
between the two states of operation can be determined, 
divided by the fractional Q modulation. Measurement of this 
frequency difference to  the highest possible accuracy takes 
1000 seconds or more and requires a second maser with 
equivalent stability. 

An advantage of this scheme is that, to  the extent that the 
Q modulation is due t o  spin exchange, the frequency offset 
due t o  this same mechanism is also eliminated, giving increased 
accuracy t o  the tuned frequency. The principal disadvantages 
are the need for a second maser to use as a reference and the 
relatively long term frequency shifts that result from the 
modulation, making maser output unusable during the tuning 
process. 

In signal injection autotuning [ l ]  , [ 2 ] ,  the  frequency offset 
of the cavity resonator is detected as a result of the difference 
in cavity response at two frequencies equally spaced from the 
maser operating frequency but far enough from it t o  prevent 
interference with it. The injected signals are generated by 
offsetting the frequency of the maser output signal and, 
theoretically, can be much larger in amplitude, allowing an 
excellent signal-to-noise ratio t o  be obtained for the inferred 
cavity frequency offset. The difficulty with signal injection 
methods is that nearly complete carrier suppression in the 
injected signal is required to  prevent interference with maser 
operation. This is because phase instabilities anywhere in the 
receiver and electronics used t o  generate and transmit the 
injected R F  signals will modulate the frequency-pulling effect 
of such a carrier. The resulting frequency offset of the maser 
output is given by 

where Ph and P, are the hydrogen output and injected carrier 
powers, respectively, Qh is the hydrogen line Q, and @ is the 
phase difference between the injected carrier and the hydrogen 
signal. For a line Q of  lo9 and a required frequency stability of  
6 f/f = 10-15, some combination of overall phase stability and 
carrier suppression of 120 dB compared to  the signal power is 
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required by Eq. (1). Since the phase of a suppressed carrier is 
usually not well controlled, the entire burden is placed on its 
magnitude. This problem has not generally been addressed by 
proponents of the technique. 

The injected frequencies can be applied either simultane- 
ously or sequentially. If  the signals are applied together, the 
requirement for carrier suppression is passed on  t o  the injec- 
tion electronics in a straightforward manner. Since the main 
advantage of the technique is the improvement in signal-to- 
noise ratio that results from large injection power, a value of 

- 100 9. 
'h 

- _  

has been proposed. From Eq. ( l ) ,  and for line Q and stability 
as above, the required carrier suppression is 140  dB. 

For switched-frequency injection, some degree of carrier 
suppression results from the modulation index of -10 implied 
by the operating conditions specified in [ 2 ] .  However, this is 
overcome by the larger injection power which justifies the 
method. At its worst, with the frequency offset f, incorrectly 
chosen t o  be an odd multiple of the modulation frequency 
f, , carrier power for square-wave frequency modulation is 
given by 

(3) 

where Pi and P, are the injected and carrier powers, giving a 
phase-dependent frequency variation from Eq. (1) and Eq. (2)  
of 

(4) 

per radian of phase difference between the injected carrier and 
the maser oscillation. For conditions as above and a modula- 
tion index off, / f, = 1 1, Eq. (4) implies a sensitivity of  about 
6 f/f = 6 X per radian, an unacceptable value. 

A much greater degree of carrier suppression can be accom- 
plished by appropriately adjusting the ratio f, / f, . In this case, 
the sensitivity t o  frequency and duty-cycle variation and t o  
phase variations between the switched signals will depend in 
detail on the ratio chosen. For example, if time spent a t  each 
frequency is chosen t o  be an exact multiple of the period 



defined by the frequency offset ( f o / f m  = 2A9. the sensitivity 
of the remaining carrier to a timing inaccuracy 6 t  can be 
shown to be given by 

for uncontrolled phases at the two frequencies. Restating 
Eq.(5) in terms of duty cycle 71 and modulation frequency 
stabilities gives 

from Eq. (1) and Eq. (2) for Q = lo9 and 6 f / f  = 10-15. If the 
two injected frequencies could be controlled so that they were 
exactly in phase at the switching points, the dependence on 
duty cycle would be zero to the first order, a much more 
attractive situation. There would remain, however, a sensitivity 
to any AM at the switching points of the modulation cycle. 
These aspects indicate the complexity associated with any 
realistic solutions to the carrier suppression problem. 

Cavity modulation autotuning [3],  [4] is similar to signal 
injection; in both cases the electromagnetic response of the 
cavity to microwave signals is used to determine its frequency 
relative to the maser operating frequency. The difference is 
that instead of modulating the signal driving the cavity, some 
property of the cavity itself is varied. For very rapid modula- 
tions of either the cavity Q or its frequency, the output signal 
from the hydrogen atoms remains relatively constant, resulting 
in a modulation of the amplitude or phase, respectively, of 
the cavity output signal, even when it is perfectly tuned. If the 
cavity is mistuned, a complementary phase or amplitude 
modulation results which is proportional to the amount of 
mistuning. This can be detected by means of a phase-sensitive 
amplifier, and the signal can be used to correct the cavity 
frequency. 

The inherent limit to performance at long averaging times 
for a maser stabilized in this way is determined by the phase 
or amplitude noise of the output signal, depending on the type 
of modulation used, at the modulation frequency in relation 
to the signal power. In this case, the autotuning power is just 
that available from the maser. For frequencies of interest, 
namely those larger than the inverse of the hydrogen response 
time, the noise is typically due to the follower amplifier, being 
identical in phase and amplitude and independent of the 
modulation frequency. For this reason, limits to performance 
are nearly identical for the two types of modulation. Further- 
more, since this same source of noise dominates maser perfor- 

mance for short times, the performance possible from the 
stabilized maser can be directly related to that of the same 
unit at short times without stabilization. Calculation of this 
relationship is presented in the following section. 

Systematic errors, while inherently smaller than for signal 
injection, determine many aspects of the design of the modula- 
tor. Because of the large modulation complementary to that 
being used to detect the cavity frequency deviation, any cross- 
modulation effects will give rise to inferred cavity frequency 
deviation and thus to frequency errors in the stabilized system. 
On the other hand, variation of the magnitude of the desired 
modulation causes only a change in sensitivity to frequency 
error. As an example, if incidental frequency modulation 
A,. = 6 f,Q,/& accompanies an intended Q-modulation Aq = 
SQ/Q,, a systematic change in the output frequency results 
which is given by 

2 = (2) Q,’ 
f (7) 

where Q, is the nominal cavity Q and Qh is the hydrogen line 
Q, as previously defined. Phase shifts between the modulator 
and cavity cause similar effects. The advantage of the modu- 
lator is that it can be constructed of a few electronic compo- 
nents placed directly at the maser cavity. No cable lengths 
need to be interposed between it and the cavity, the thermal 
environment is very well controlled, and the device can be 
designed for insensitivity to the driving signal at the designed 
operating points. The crucial aspects in the design of the 
modulator are its long-term stability and the sensitivity of 
incidental cross-modulation to variation in its driving signal. 

To date, long-term stability measurements have been pre- 
sented only for cavity frequency modulation, even though Q 
modulation has some substantial advantages. These include 
the elimination of incidental phase modulation, whch is 
zero in the locked condition, and the availability of variable 
Q for calibrating and characterizing maser performance as a 
function of cavity Q. In a following section we present the 
design for such a Q modulator and results of operational tests 
in a hydrogen maser. The modulator uses a PIN diode as the 
active element and, when properly tuned, shows no incidental 
frequency modulation. 

II. Analysis 
In this section, an analysis of autotuning by cavity modu- 

lation is presented which shows that the performance of the 
stabilized maser can be related in a particularly simple man- 
ner to that of the same unit without stabilization for very 
short measuring times. This can be done because the same 
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additive amplifier noise limits the statistical performance in 
both cases. In particular, expressions are derived for the cross- 
over time rc, where the 1/r  performance of the unstabilized 
maser and' the l /Gperformance  of the stabilized maser are 
equal to each other. The value of rc for typical conditions is 
approximately one second. Square wave modulation is explic- 
itly included in the treatment, since this minimizes the prob- 
lem of designing out systematic errors due to cross-modulation, 
as will be discussed in the following section. Both Q modula- 
tion and amplitude modulation are treated, showing only 
small differences between them in regard to statistical prop- 
erties. 

, 
I 

, 
I The (one-sided) spectral densities of phase and amplitude 

fluctuation due to additive noise are equal in value and given 

where k is Boltzmann's constant, T the temperature, F the 
noise factor of the maser receiver, and Po the output power. 
This power is related to the more commonly used input 
power from the hydrogen Ph by 

Qe Po = Ph * - Q (9) 

where is the external Q of the cavity and Q the loaded Q .  
The Allan variance of frequency fluctuations in the maser 
output due to the effect of white phase noise as shown by 
Eq. (8) is given by [5] 

3BkTF u2 = 
Y 8n2 fo P,r' 

where B is the bandwidth of the measuring system and f o  is 
the operating frequency. Note that this value is 3/2 times 
larger than the commonly used expression for the "variance" 
that is due to additive white noise [6] but that does not 
correspond to usual data-taking procedures. 

The effect of this same noise on the variance of phase or 
fractional amplitude fluctuations is similarly given by 

- kTF 
5; = 4 v / v  - 2po7 

This can be directly related to a necessary uncertainty in the 
inferred cavity frequency, due to any phase or amplitude 
measurement, through the slopes of phase and amplitude 
with respect to frequency shown in Fig. 1 .  The slopes indi- 
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cated in the figure are the maximum in each case. For the 
case of phase variation it is given by 

from which the uncertainty in cavity frequency can be derived, 
with 

fc = ( & ) %  

If the loop is closed, inferred variations in cavity frequency 
will cause it to be incorrectly compensated, giving variations 
in the operating frequency, which is pulled by the cavity mis- 
tuning. Since the pulling of the operating frequency is given by 

6fc  Qc 6 fo  = - 
'h  

which, together with Eq. (13), gives 

comhinine with Ea. ( 1  1 \ eives 

i 

for the necessary variance of fractional frequency variations 
under closed loop conditions. The crossover between this 
expression, with a logarithmic slope of -1 /2 ,  and the unlocked 
maser noise given by Eq. (10)  with a slope of -1, is found to 
be given by 

, 
I 

I 

which for typical conditions given by B = 20 Hz, Qh = l o9 ,  
fo  = 1.42 GHz becomes 

rc = 3.01 seconds (18) 

Such a crossover time is shown in Fig. 2 .  

If the cavity were detuned so that the operating frequency 
lay at the point of maximum slope of the amplitude curve 



shown in Fig. 1 ,  a similar inference could be made as to 
necessary fluctuations in output frequency if measurement of 
the cavity frequency were inferred from the resulting ampli- 
tude. As in Eq. (12) we have 

dv - 4 v 0 Q ~  

q-3312fo 
and, following an identical procedure beginning again with 
Eq. ( l l ) ,  return a value for u$ which is larger by 27/4 than 
that given by Eq. (16) and a value for 7, smaller by the same 
factor. This gives an apparent disadvantage to the frequency- 
modulation technique, but one that it recovers, as is shown 
below. 

So far, this has been a calculation in principle, since no 
mechanism has been included to allow a measurement of the 
phase of the signal from the maser cavity. Figures 3 and 4 
show the phase and amplitude variations A@ and A?‘ which 
result from rapid Q and frequency modulation in the presence 
of an offset between the cavity frequency& and the operating 
frequency fo. Considering the case of Q modulation explicitly, 
instead of Eq. (12) we write 

where Aq = AQ,/Q, is the fractional Q modulation, and 
A f, is the frequency offset between fo and f, . Combining with 
the pulling Eq. (14) gives, in a manner analogous to Eq. (15) 

The variance for the phase difference uA@ shown in Fig. 3 is 
also not the same as that given by Eq. (1 l ) ,  but it is easy to 
evaluate for the case of square-wave modulation. If one-half 
of the time is spent in each state, the value given by Eq. (1 1) 
would double, effectively taking r to a new value r/2. The 
difference between two such quantities will again double the 
square of the variance, giving 

2kTF - -  

which, when combined with Eq. (21), gives a value of 

k TF 

2Ai QiPo r 
u; = 

for the variance and 

for the crossover time. For A i  = 2, and the conditions as 
described above, a value of 

T, = 0.375 second (25) 

is obtained. 

For frequency modulation, there is an apparent value to 
choose for the frequency deviation; it is just that which maxi- 
mizes the slope. Taking that offset (a fractional displacement 
of 1/ [ a ]  of the cavity frequency), modulation as shown in 
Fig. 4 gives a signal strength of 

8 Q, AfC 
AV/V = - 

33‘2 f, 

proportional to the frequency offset Af,, as in Eq. (20). Again, 
accounting for the statistics of modulation we have 

2 kTF 
cJ:v,v = - Po 

as in Eq. (22) and 

for the variance, giving, again with Eq. (10) 

for the crossover time, and 

7, = 0.447 second (30) 

for the conditions as above, showing a slight advantage for 
the frequency modulation method. This would be reversed 
if a Q modulator could be designed which, instead of dissipat- 
ing energy in the cavity, either enhanced it or transmitted it 
to the receiver. Variance values calculated here are somewhat 
higher than those estimated in [ 1 1 .  
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The reference signal for phase measurements can be pro- 
vided by a quartz crystal oscillator. As is demonstrated in 
Fig. 2,  for times corresponding to a modulation frequency of 
100 Hz the phase noise from the maser, as calculated, will be 
the dominant contribution to measurement uncertainty. 

111. PIN Diode Modulator 
Figures 5 and 6 show block and schematic diagrams of an 

autotuned maser using a PIN diode Q modulator. Cavity 
tuning was accomplished using a varicap diode external to the 
maser physics package. The modulator itself is placed in the 
vacuum space and is mounted directly on the resonant cavity 
itself. First tests on a test-bed maser were entirely successful, 
with the locked loop sustaining its operation for indefinite 
periods of time and for a wide variety of time constants. 

In the design of the PIN-diode modulator an attempt was 
made to minimize as much as possible any variation of the 
systematic contribution of the modulator and its support 
equipment to the maser output frequency. To that end, it 
seemed necessary to use square-wave modulation; while it 
might be possible to make the tuning properties of the modu- 
lator insensitive to the driving conditions at the end points, it 
would be difficult to accomplish this throughout the range of 
its operation. 

Figure 7 shows schematically the tuning properties of three 
possibly useful modulators. Of these, the curve labeled C is 
clearly superior, with no detuning anywhere in its range. 
Curve B is less desirable but still workable. It would be neces- 
sary to minimize the switching time because of detuning 
effects in its midrange, but equal tuning effects at its two end 
points mean that duty cycle sensitivity is not a problem. 
Curve A is clearly the worst, showing insensitivity to applied 
current in the highly lossy state as required but requiring care- 
ful control of the duty cycle, since frequencies at the end 
points are different. The zero-current state, shown at the 
origin, is inherently insensitive to external circuit instabilities, 
since the diode is in an open-circuit condition at that point. 
We find that, depending on its tuning, our modulator follows 
closely curve A or C.  Its operation can be understood as 
follows. 

If the circuit diagram for any passive device coupled to an 
electromagnetic resonator is redrawn in the form shown in 
Fig. 8, the effect of the circuit on the properties of the resona- 
tor takes a particularly simple form. In this case the loading Q, 
and frequency shift are given by 

Q, = Re, 

and 

where E, is the energy stored in the resonator and emf is the 
open circuit voltage coupled to the circuit resulting from that 
energy and the coupling configuration. Reduced to  this form. 
it is apparent that frequency shifts can be seen to be due only 
to an effective capacitance (positive or negative), and added 
losses only to the effective resistance. 

The equivalent circuit of the PIN modulator shown in 
Fig. 6 is given in Fig. 9, showing the loop inductance L,,  
tuning capacitor C,, incidental inductance Li, and the PIN 
diode parameters R, and C,. If the capacitance C, is a con- 
stant, the circuit as shown is sufficient to give performance 
C as shown in Fig. 7 .  This is accomplished by tuning the 
variable capacitor C, so that its reactance is equal and oppo- 
site to that of the sum of the two inductances. In that case 
Re, in Fig. 8 becomes R, and Ceff becomes C, . Since Cp is 
assumed constant, only a constant frequency shift results 
under any circumstance, and a change in R, only affects the 
Q .  Specifications for PIN diode parameters often show an 
effective parallel capacitance which has one value under back 
biased conditions, and another when resistive. The addition of 
R, in Fig. 10 would allow compensation for such a charac- 
teristic. 

We do not find any evidence of variation in, C’ as the PIN 
diode resistance is varied by a changing current through the 
diode. We chose to design the modulator for “low Q” opera- 
tion, with the reactances associated with L, and C, about 
equal to the loading resistance of the diode in the “on” condi- 
tion. The value of this resistance is about 100 ohms. The Q 
of the cavity can be reduced far below its nominal “low Q” 
value by further reduction of R, to 10 ohms or below. The 
tuning procedure is to adjust for nominally zero frequency 
duft in this very low Q condition where any imbalance between 
L, t Li and C, is exacerbated. Using this procedure, no tuning 
effects could be detected between high and low Q states of 
the modulator. 

IV. Summary 
Analysis of several types of autotuning schemes has been 

presented with particular attention to both statistical and 
systematic errors in cavity-modulation and signal injection 
methods. Systematic variations due to incomplete carrier 
suppression in signal-injection methods are found to be a very 
substantial difficulty, probably outweighing any statistical 
advantage. Statistical analysis of cavity Q- and frequency- 
modulation methods shows them to be essentially identical 
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in this regard, with limiting performance shown to be directly 
related to that of the unstabilized maser. 

modulation. First tests on a test-bed maser were entirely 
successful, with the locked loop sustaining its operation for 
indefinite periods of time. Operation of this relatively low 
performance unit was not adversely affected in any way by 
the effects of the modulator. Further tests are under way. 

A PIN-diode Q modulator has been designed, constructed, 
and tested whch  shows no observable incidental frequency 

I 
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